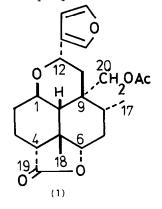
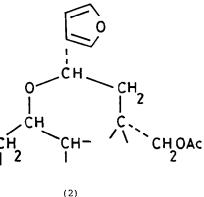
GYMNOCOLIN, A NEW <u>cis</u>-CLERODANE DITERPENOID FROM THE LIVERWORT Gymnocolea inflata. CRYSTAL STRUCTURE ANALYSIS.

Siegfried Huneck

(Institute of Plant Biochemistry, Research Centre for Molecular Biology and Medicine of the Academy of Sciences of the German Democratic Republic, DDR-410, Halle/Saale, Weinberg)


Yoshinori Asakawa and Zenei Taira


(Institute of Pharmacognosy, Tokushima Bunri University, Yamashiro-cho, Tokushima 770, Japan)

and A. Forbes Cameron, Joseph D. Connolly and David S. Rycroft (Chemistry Department, University of Glasgow, Glasgow G12 8QQ)

<u>Summary</u>. Gymnocolin, a new diterpenoid from the liverwort <u>Gymnocolea</u> <u>inflata</u> (Huds) Dum., has been shown to have the <u>cis</u>-clerodane structure (1) by X-ray crystallographic analysis.

Extraction of the liverwort <u>Gymnocolea inflata</u> (Huds) Dum., collected in the Ore mountains, GDR,¹ in Le Tanet, France² and in Hokkaido, Japan,³ afforded a new <u>cis</u>-clerodane, gymnocolin, which has been assigned the structure and relative configuration (1) on the basis of spectroscopic evidence and an X-ray crystal structure analysis.

Gymnocolin, $C_{22}H_{28}O_6$, m/z 388.1894 (calc. 388.1886), m.p. 196-197°, (ex MeOH), u.v. (MeOH) 210 nm (log ε , 3.54), c.d. 230 nm ($\Delta\varepsilon$ +0.66) and 202 nm ($\Delta\varepsilon$ -3.40), has γ -lactone and acetate absorption in its infrared spectrum [v_{max} (CCl₄) 1790 and 1745 cm⁻¹]. The ¹H and ¹³C spectra suggest that the lactone terminus is secondary [δ_H 4.23 (br d, J 8 Hz, H-6); δ_C 81.6 (d, C-6)] and the acetate [δ_H 1.90; δ_C 169.4 and 21.1] is primary [δ_H 4.52 and 3.84 (ABq, J 12 Hz, 2H-20); δ_C 62.3 (t, C-20)] and, in addition, reveal the presence of a β -substituted furan. These functional groups account for five of the six oxygen atoms. Resonances for two secondary carbons bearing oxygen [δ_H 5.12 (br d, J 7 Hz, H-12) and 3.74 (d t, J 11, 4 Hz, H-1); δ_C 68.3 (d, C-12) and 67.5 (d, C-1)] indicate that the sixth oxygen must be present as an ether, presumably cyclic. On this basis the molecule is bicarbocyclic. Other features of the ¹H and ¹³C spectra⁴ include a tertiary methyl group [δ_{H} 1.40 (3H-18); δ_{C} 31.9 (q, C-18)], a secondary methyl group [δ_{H} 0.96 (d, J 7 Hz, 3H-17); δ_{C} 15.8 (q, C-17)], a methylene group [δ_{H} 2.56 (d, J 14 Hz, H-11_{eq}) and 1.70 (dd, J 14, 7 Hz, H-11_{ax}); δ_{C} 17.7 (t, C-11)] and a methine [δ_{H} 1.75 (d, J 11 Hz, H-1); δ_{C} 55.6 (d, C-1)].

Double irradiation experiments permitted the part structure (2) to be assembled in the following way. The proton on the ether terminus at δ 5.12 (H-12) is situated at C-12 since it has a long-range coupling to the furan. It also forms the X-part of an AMX system involving the C-11 methylene group. Irradiation at the frequency of the C-11 axial proton ($\delta_{_{\rm H}}$ 1.70) causes sharpening of the -CH_OAc protons by removal of 4 J coupling. This group can therefore be attached to the adjacent fully substituted carbon (C-9). The highfield chemical shift of the acetate methyl group (δ 1.90) suggests shielding by the furan ring⁵ and hence these two groups must lie on the same face of the molecule. The proton attached to the other ether terminus (H-1) is a doublet of triplets and is flanked by a methylene and a methine. The latter (H-10) identified by double irradiation, is a sharp doublet (J 11 Hz) which lacks further coupling. On the assumption that the ether ring is six-membered, part structure (2) can be readily expanded, on biogenetic grounds, to give the clerodane structure (1) for gymnocolin. Since the coupling information did not permit a decision on the stereochemistry of gymnocolin an X-ray crystal structure analysis⁶ was undertaken. This confirmed the proposed structure and revealed that gymnocolin is a cis-clerodane with the relative stereochemistry as in (1). In the crystalline state gymnocolin has a conformation in which rings A and B are slightly distorted twist boats and ring C is a chair.

Gymnocolin is the first example of a <u>cis</u>-clerodane to be isolated from the Hepaticae and provides a further example of the ability of this family to synthesise a fascinating array of terpenoid structures.^{7,8}

References

- 1. S. Huneck and K.H. Overton, Phytochemistry, 10, 3279 (1971).
- Y. Asakawa, R. Matsuda, T. Takemoto, S. Hattori, M. Mizutani, H. Inoue, C. Suire and S. Huneck, J. Hattori Bot. Lab., 50, 107 (1981).
- Y. Asakawa, R. Matsuda, M. Toyota, C. Suire, T. Takemoto, H. Inoue, S. Hattori and M. Mizutani, <u>J. Hattori Bot. Lab.</u>, <u>50</u>, 165 (1981).
- 4. The remaining 13 C resonances appear at δ_{C} 177.7 (s, C-19), 142.9 (d), 137.7 (d), 128.1 (s) and 108.4 (d) (furan), 40.3 (s), 37.6 (s), 45.8 (d), 38.0 (d), 38.7 (t), 30.0 (t) and 26.1 (t).
- 5. J.D. Connolly, D.A. Okorie and D.A.H. Taylor, J. Chem. Soc. Perkin I, 1145 (1972).
- 6. Crystal data: Monoclinic, <u>a</u> = 12.431, <u>b</u> = 9.714, <u>c</u> = 8.306 Å, β = 98.18°, <u>Z</u> = 2, <u>U</u> = 992.7 Å³. F (000) = 416. Space group <u>P</u> 2₁.
- 7. K.R. Markham and L.J. Porter, Progress in Phytochemistry, 5, 181 (1978).
- 8. J.D. Connolly, <u>Revista Latinoamer. Quim.</u>, <u>12</u>, 121 (1981).

(Received in UK 22 October 1982)